
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 1

A Reference Model for Virtual Machine
Launching Overhead

Hao Wu∗, Shangping Ren∗, Gabriele Garzoglio†, Steven Timm†, Gerard Bernabeu†,Keith
Chadwick†,Seo-Young Noh‡

Abstract—Cloud bursting is one of the key research topics in the cloud computing communities. A well designed cloud bursting
module enables private clouds to automatically launch virtual machines (VMs) to public clouds when more resources are needed. One
of the main challenges in developing cloud bursting module is to decide when and where to launch a VM so that all resources are most
effectively and efficiently utilized and the system performance is optimized. However, based on system operational data obtained from
the FermiCloud, a private cloud developed by the Fermi National Accelerator Laboratory for scientific workflows, the VM launching
overhead is not a constant. It varies with physical resource utilization, such as CPU and I/O device utilizations, at the time when a VM
is launched. Hence, to make judicious decisions as to when and where a VM should be launched, a VM launching overhead reference
model is needed. In this paper, we first develop a VM launching overhead reference model based on operational data we have obtained
on the FermiCloud. Second, we apply the developed reference model on the FermiCloud and compare calculated VM launching
overhead values based on the model with measured overhead values on the FermiCloud. Our empirical results on the FermiCloud
indicate that the developed reference model is accurate. We believe, with the guidance of the developed reference model, efficient
resource allocation algorithms can be developed for cloud bursting process to minimize the operational cost and resource waste.

Index Terms—VM Launching Overhead, Reference Model, Cloud, FermiCloud, Virtual Machine, VM Launching,VM Startup Time,
Launch, Overhead, Model, Predict

F

1 INTRODUCTION

C LOUD technology has been benefiting general purpose
computing for a number of years. The pay-on-demand

model brought about by cloud computing allows companies
to avoid over-provisioning in early stages of project de-
velopment. Furthermore, comparing to the traditional grid
computing, cloud computing can better utilize resources
provided by its underlying infrastructure, as it can deploy
different tasks on the same physical computer node. In
addition, computation power can also be dynamically al-
located to tasks when more resources are needed by the
tasks. Another benefit of using a cloud over a grid is that a
cloud has “unlimited“ resources – when a private cloud is
fully occupied, cloud bursting techniques can temporarily
acquire external resources from public clouds to fulfill the
need.

Many scientific research institutions have foreseen the
benefits of using computer clouds and have migrated
their research platforms from traditional grid and dis-
tributed computing platform to the cloud computing en-
vironment [1] [12] [17] [19] [10]. Fermi National Accelerator
Laboratory (Fermilab), a leading research institution in the

∗Illinois Institute of Technology,10 W 31st street, 013, Chicago, IL, USA,
{hwu28, ren}@iit.edu.
†Fermi National Accelerator Laboratory, Batavia, IL, USA.
{garzogli,timm,gerard1,chadwick}@fnal.gov.
‡National Institute of Supercomputing and Networking, Korea Institute of
Science and Technology Information, Daejeon, Korea, rsyoung@kisti.re.kr
The research is supported in part by NSF under grant number CAREER
0746643 and CNS 101873, by the U.S. Department of Energy under contract
number DE-AC02-07CH11359 and by KISTI under a joint Cooperative
Research and Development Agreement CRADA-FRA 2013-0001 / KISTI-
C13013.

high energy physics (HEP) field, started to build a private
infrastructure-as-a-service facility, the FermiCloud, in 2010.
The FermiCloud has successfully served the HEP experi-
ments since its establishment. S. Y. Noh et al. [20] [16] of
KISTI collaboratively developed the vcluster cloud manage-
ment tool for FermiCloud to automatically allocate cloud cy-
cles on FermiCloud and KISTI’s GCloud as well as Amazon
AWS. However, how to dynamically allocate resources so
that application’s average response time and system’s total
operational cost are reduced is a research and engineering
challenge yet to be addressed.

Resource allocation problems in cloud computing has
drawn more and more attention in research community in
recent years [14], [7]. However, most research in the area
assume that VM launching overheads with respect to time
and resource consumption are negligible. As a result of
this assumption, neither the launching overhead nor the
dependency between the overhead and resource utilization
are taken into consideration in designing resource allocation
algorithms. However, our production line operation data
(Fig. 1) indicates that the VM launching overhead can have
significant variations when it is launched at different time
or on different physical machines. Figure 1 depicts the
launching time for 227 VMs that have been deployed on
FermiCloud over one month period. The VM launching time
ranges from few seconds to over one thousand seconds.

In addition to time overhead, VM launching overhead
also includes system resources a VM consumes during its
launching process. Both of time and utilization overheads
can impact the system’s performance. For instance, VM
launching process consumes a significant amount of CPU
and I/O resources, leads to a high system CPU and I/O

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 2

0 50 100 150 200

0

500

1,000

VMs

Se
co

nd
s

VM Launching Time

Fig. 1: VM Launching Time on FermiCloud
(08/22/2014 - 09/19/2014)

utilization at the time of launching. If each host computer
in the private cloud happens to launch a new VM at the
same time, due to high system utilization caused by VM
creation, the computer cloud may consider all its hosts are
fully occupied and decide to perform cloud bursting and
create VMs on an external public cloud. Such additional
cost of bursting to external public cloud is unnecessarily
rendered and can be prevented if we have a VM launching
overhead reference model. Furthermore, if a task requires
an additional VM in order to complete its work, but the
VM takes much longer time to complete its launching than
expected, it is possible that the task has already finished its
work before the VM is ready for executing the task. This
again leads to resource waste and an added cost due to the
lack of a VM launching overhead information.

In this paper, we are to 1) analyze the patterns of VM
launching process based on large amount of data obtained
from real working systems, 2) define a reference model to
represent the patterns, and 3) validate the accuracy of the
developed reference model with real system operational
data. At this initial study stage, we emphasize a method-
ological point of view rather than definitive numerical re-
sults based on accurate parameter values. The main purpose
of this study is to show how an analytic model can be
developed.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 introduces the FermiCloud
and its architecture. Section 4 defines the terms that are used
in the paper. Section 5 analyzes the VM launching overhead
based on a large set of experiments on the FermiCloud.
Section 6 presents a reference model for VM launching
overhead. Section 7 evaluates the accuracy of the proposed
model. We conclude the work in section 8.

2 RELATED WORK

Researches on modeling and evaluating the cloud’s per-
formance started almost at the same time when computer
cloud itself emerged. One of the most influential cloud
modeling tool is CloudSim [7] developed by the CLOUDS

lab from the University of Melbourne. CloudSim is a Java-
based cloud simulation tool that supports modeling and
simulation of large scale cloud computing environments.
The CloudSim provides a comprehensive modeling tool that
covers almost all basic elements under a cloud environ-
ment. In particular, it provides an infrastructure modeling
to capture the characteristics and behaviors of both VM
and physical infrastructure where VMs are deployed. It also
provides a cloud market model that models the cost of re-
sources, a network model that models the network behavior
of inter-networking of clouds, a cloud federation model
that models the communication between clouds, a power
consumption model that models the power consumptions in
the datacenter, and a resource allocation model that models
VM allocation policies.

Recently, Huber et al. evaluate the virtualization perfor-
mance and propose a virtualization overhead model [9].
In their work, they mainly focus on two virtualization
platforms, i.e., XenServer and VMware ESX. They test the
performance downgrades that are brought by the virtual-
ization. They test the CPU, memory, disk IO, and network
performance degradations on both XenServer and VMware
ESX platforms. Based on the experiments, they categorize
the virtualization performance influencing factors into four
major categories: virtualization type, hypervisor’s architec-
ture, resource management configuration, and workload
profile. However, Huber’s model does not consider virtual
machine launching overhead, it only provides the computa-
tion overhead caused by the virtualization.

Researchers have adapted the above cloud models and
cloud simulations tools and made significant contributions
to optimize resource allocation process on clouds, such as
resources provisioning algorithms from QoS perspective [8],
from service providers’ profit perspective [18], and from
energy consumption perspective [6]. Recently, Mengxia Zhu
et al. have proposed a cost effective scheduling for scientific
workflow under cloud environments [14]. Their scheduling
algorithm aims to shorten the application’s response time
and reduce the energy consumption simultaneously by con-
sidering VM launching overhead. Some of the researches,
such as Zhu’s work [14] and CloudSim [7], have taken VM
launching overhead variation as a key variable for designing
resource allocation algorithms. However, they treat the VM
launching overhead as a constant.

Some of the researchers have observed that VM over-
head may have a large variation on public cloud and re-
alized that the variation of VM launching overhead may
cause significant impact on the resource allocation pro-
cess [13] [11]. Hence, significant contributions have been
made on reducing the impact of VM launching overhead.
For instance, Lagar-Cavilla et al. [11] have developed a cloud
programming paradigm and a system called SnowFlock that
can significantly improve the VM scaling efficiency using
fast VM cloning.

We have also observed significant VM launching over-
head variations on the FermiCloud’s daily operations. In
the FermiCloud bursting project, the design of the resource
allocation algorithm aims to automatically allocate resources
for applications that need extra computational resources. If
the VM launching overhead variation is not well modeled
and calculated, the system utilization and efficiency may

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 3

be pulled down dramatically, causing resource and energy
waste. Hence, we need an accurate mathematical model for
VM launching overhead. Rather than aiming to reduce VM
launching overhead, the goal of this paper is to understand
and analyze VM launching process and developed a refer-
ence model to predict the overhead during such process.

3 FERMICLOUD

The FermiCloud uses OpenNebula [3], [15] as its cloud
infrastructure management tool and uses KVM as its VM
management tool. VMs running on the FermiCloud are all
paravirtualized. Under OpenNebula [4], the VM launching
process consists of four major states. Fig. 2 illustrates the
state change during a VM launching process in OpenNeb-
ula [4]. In particular, when a user creates a new VM, the
VM enters the pending state. In the pending state, the cloud
scheduler decides where to deploy the VM. Once the VM
is deployed on a specific host, it enters into the prologue
state in which all VM related files (images in our case) are
transferred from the image repository to the host machine.
After all the files are copied to the host, the VM enters the
boot state, during which it is booted from the host. Finally,
after the VM is successfully booted, it enters into the running
state. Once a VM is in its running state, it is ready to execute
tasks.

Fig. 2: VM Launching State Diagram[4]

Fig. 3 illustrates the system architecture of FermiCloud.
The FermiCloud system has an OpenNebula front-end
server that manages the entire cloud infrastructure, an
image repository that stores the VM images, and a set of
host machines on which VMs are deployed. Both front-
end server and VM hosts use the GFS2 clustered shared
file system, which is hosted on a fibre-channel connecting
SAN with two NexSan SataBeast servers for storage servers.
The logical unit used in the study has ten 7200-RPM SATA
disk drives in a 9+1 RAID5 configuration for 17TB of usable
space. Each SAN controller has 2GB cache memory. Both
front-end server and VM hosts are configured with 16-core
Intel(R) Xeon(R) E5640 @ 2.67GHz CPU and 48GB memory.
All the machines in FermiCloud are installed with Scientific
Linux operating system [2].

4 TERMINOLOGY

This section defines the terms used in the paper.
Host CPU utilization: The host CPU utilization is defined
as total CPU utilizations consumed by all the processes on
one host machine.
Host disk write utilization: The host disk write utilization
is defined as the total disk write bandwidth utilizations
consumed by all the processes on one host machine.

Fig. 3: System Architecture

Host disk read utilization: The host disk read utilization
is defined as the total disk read bandwidth utilizations
consumed by all the processes on one host machine.
VM CPU utilization: The VM CPU utilization is defined as
the CPU utilization consumed by a VM on a single core. For
example, in a 16-core CPU machine, the VM CPU utilization
is 100% means the VM fully occupies one core. It equals to
the consumption of 6.25% host CPU utilization.
VM disk write utilization: The VM disk write utilization is
defined as the amount of disk write bandwidth consumed
by a VM over the total disk write bandwidth.
VM disk read utilization: The VM disk read utilization is
defined as the amount of disk read bandwidth consumed by
the VM over the total disk read bandwidth.
Prologue: Prologue is an OpenNebula [4] terminology that
indicates the process of copying an image from image
repository to host machine. In the paper, the term prologue is
interchangeable with the term image transmission process.

5 VM LAUNCHING OVERHEAD ON FERMICLOUD

In this section, we study the patterns of VM launching
overhead based on the VM operations in the FermiCloud
environment.

5.1 VM Preparation
In our experiment tests, we focus on two types of VM
instances, i.e., a small instance configured with one virtual
CPU core and 2GB memory, and a large instance configured
with 16 virtual CPU cores and 32GB memory. There are
also two types of VM images tested, i.e., 4.7GB ”QEMU
Copy On Write 2” (QCOW2) image and 15.6GB raw image.
Hence, four different types of VMs are tested during the
experiments, i.e., small instance VM with QCOW2 image
(SQ), small instance VM with raw image (SR), large instance
VM with QCOW2 image (LQ) and large instance VM with
raw image (RL).

5.2 Methodology
We use noninvasive programs, i.e., iostat and sar to obtain
system information. The OpenNebula platform logs the
time points when VMs enter the running state. In order
to minimize the impact of cloud management tools, i.e.,
OpenNebula in our case, on VM launching process, we
count VM start time as the time when a VM is deployed
on the host machine. In cloud environment, VMs are not
considered to be ready for use until the users can access the

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 4

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
ti

l.
CPU

IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
ti

l.

(a) Utilization Variation of Small Instance with Uncached
QCOW2 Images

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
ti

l.

CPU
IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
ti

l.

(b) Utilization Variation of Small Instance with Cached
QCOW2 Images

Fig. 4: Utilization Variation of Small Instance with QCOW2
Images

VMs. Hence, we retrieve the start time of SSHD service from
VMs’ system logs as the times when VMs are actually ready
for use.

In the cloud environment, existing running VMs may
have significant impact on VM launching overhead. How-
ever, from physical machine (VM host machine)’s point of
viewer, all VMs that are running on it are processes. Appli-
cations that are running on different VMs are transparent
to physical machines. Hence, resources consumed by the
VMs and workloads inside the VMs are reflected by the
consumption of physical resources. Hence, we mimic the
scenario that VM is launched when there are VMs already
running in system by manipulating host machine’s physical
resource usage, i.e. CPU and I/O utilizations.

5.3 Base VM Launching Overhead
We first obtain the baseline overhead of launching a new
VM. In order to obtain the baseline utilization overhead
of launching a new VM, we let all the host machines in
the private cloud be empty, i.e., have no application being
deployed on the cloud. Each time, a single VM is launched
on an empty host machine. The experiment is repeated
twenty times for each type of VM.

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
ti

l.

CPU
IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
ti

l.

(a) Utilization Variation of Large Instance with Uncached
QCOW2 Images

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
ti

l.

CPU
IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
ti

l.

(b) Utilization Variation of Large Instance with Cached
QCOW2 Images

Fig. 5: Utilization variation of Large Instance with QCOW2
Images

Fig. 4(a), Fig 4(b), Fig. 5(a), Fig 5(b), Fig. 6(a), Fig. 6(b),
Fig. 7(a) and Fig. 7(b) illustrate the average utilization
changes for SQ, LQ, SR and RL VMs, respectively. The
blue line depicts the VM CPU utilization, the black line
the host CPU utilization, the brown line the host disk write
utilization, and the red line the host disk read utilization.
Table 1 gives the statistics of the utilization and timing
variations of baseline VM launching processes.

5.3.1 Cached and Uncached Images

File cache is a Linux operating system feature that usually
happens in file copying process. The VM launching process
first copies VM’s image from an image repository to the
host machine. Once the VM image is copied onto the host
machine, it is also cached into host machine’s memory.
If the VM being launched on the host machine has the
same image as the cached one, the VM’s image is directly
copied from the memory instead of copied from an image
repository. Hence, for the four types of tested VMs, we also
test the launching overheads when launch them from both
cached images and uncached images. For convenience, we
use SQ U, SQ C, LQ U, LQ C, SR U, SR C, LR U and
LR C to denote the test cases of small instance VM with

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 5

TABLE 1: Statistics of Base VM Launching Process

SQ U SQ C LQ U LQ C SR U SR C LR U LR C
LAUNCH TIME (Sec.) 74.10 49.40 73.56 51.30 129.80 70.80 135.44 71.50

MAX 79.00 53.00 75.00 56.00 136.00 77.00 140.00 74.00
MIN 72.00 46.00 71.00 47.00 126.00 67.00 132.00 68.00

TRANS. TIME (Sec.) 28.80 4.80 28.30 4.30 87.00 19.80 89.30 19.70
MAX 31.00 5.00 30.00 5.00 90.00 21.00 91.00 21.00
MIN 28.00 4.00 27.00 4.00 88.00 19.00 88.00 19.00

BOOT TIME (Sec.) 45.30 44.60 45.33 47.00 42.80 51.00 46.11 51.80
MAX 48.00 48.00 47.00 51.00 52.00 57.00 52.00 54.00
MIN 44.00 41.00 43.00 42.00 38.00 47.00 44.00 49.00

PEAK Util. (%) 62.83 64.56 81.20 83.42 58.83 57.76 78.28 75.97
MAX 65.40 66.50 85.00 90.70 65.90 59.80 81.90 78.80
MIN 54.30 62.90 78.40 80.60 53.40 55.60 70.90 72.10

TRANS. Util. (%) 24.55 75.89 24.97 72.72 25.91 78.91 25.00 78.40
MAX 26.11 98.50 27.36 79.53 27.56 81.98 28.13 81.25
MIN 22.13 66.13 22.68 66.25 23.77 74.78 23.53 73.96

uncached QCOW2 image, small instance VM with cached
QCOW2 image, large instance VM with uncached QCOW2
image, large instance VM with cached QCOW2 image, small
instance VM with uncached raw image, small instance VM
with cached raw image, large instance VM with uncached
raw image and large instance VM with cached raw image,
respectively. Fig. 4(a), Fig. 5(a), Fig. 6(a) and Fig. 7(a) illus-
trates the utilizations changes for SQ U,LQ U, SR U, and
LR U, respectively. While Fig. 4(b), Fig. 5(b), Fig. 6(b) and
Fig. 7(b) illustrates the utilizations changes for SQ C, LQ C,
SR C and LR C, respectively.

5.3.2 VM Prologue Process
The VM prologue process that copies the VM image from
the image repository to the host machine is the first step
of the entire VM launching process. As the measured disk
read bandwidth of SAN in FermiCloud is 180MB/s, the
measured disk write bandwidth of SAN in FermiCloud
is 400MB/s. The theoretical time of transferring a 4.7GB
QCOW2 image and a 15.6GB raw image from the image
repository to the host machine is 26 seconds and 87 seconds,
respectively. As indicated in Table 1, the average prologue
time of SQ U and LQ U are 28.8 seconds and 28.3 seconds,
respectively; the average prologue time of SR U and LR U
are 87 seconds and 89.3 seconds, respectively. The measured
prologue times align well with the calculated values. It is
also clear from Fig. 4(a), 5(a), 6(a) and 7(a) that during
the prologue time, disk read utilization almost constantly
reaches 100% of the SAN read bandwidth (as shown by
the red lines in the figures). The measured local disk read
bandwidth is 500MB/s. When the local disk read bandwidth
is fully utilized, the host CPU utilization consumption is
around 70% on single core. Hence, the calculated VM CPU
utilization during the prologue process is 180/(500/0.7) =
25.2%. The calculated value matches the measured average
VM CPU utilization, which is around 25%.

Notice from the figures that the disk write activities are
not synchronized with the disk read activities. In Linux,
when a file is copied, the file is written into dirty pages
first, it is then flushed into the hard disk. By Linux default
settings, the flushing process happens if the dirty page size
reaches 10% of the system active memory or 30 seconds
after the content is written into the dirty page. As the
4.7GB QCOW2 image is smaller than the size of 10% of

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
ti

l.

CPU
IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
ti

l.

(a) Utilization Variation of Small Instance with Uncached
Raw Images

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
ti

l.

CPU
IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
ti

l.

(b) Utilization Variation of Small Instance with Cached
Raw Images

Fig. 6: Utilization Variation of Small Instance with Raw
Images

system memory (48GB * 10%) and the transmission time
of the image is less than 30 seconds. The flush process is
activated immediate after the whole image is copied into
the dirty page (as illustrated in Fig. 4(a) and Fig. 5(a)).
For large images, i.e., 16GB raw images, as illustrated in
Fig. 6(a) and Fig. 7(a), the flushing processes are activated

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 6

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
ti

l.
CPU

IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
ti

l.

(a) Utilization Variation of Large Instance with Uncached
Raw Images

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
ti

l.

CPU
IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
ti

l.

(b) Utilization Variation of Large Instance with Cached
Raw Images

Fig. 7: Utilization Variation of Large Instance with Raw
Images

after 30 seconds or when the dirty page reaches 10% limits
(whenever happens first).

There is an interesting observation from Fig. 6(a) and
Fig. 7(a) that the write process is not constantly writing im-
ages into the disk. This is because the write speed (400MB/s)
is much faster than the read speed (180MB/s), by Linux
default, the flushing process is awaken every 5 seconds if
such scenario happens.

On the other hand, for cached images, as illustrated in
Fig. 4(b), 5(b), 6(b) and 7(b), there are no disk read activi-
ties happening during the VM prologue processes. This is
because images are read directly from the memory. As the
measured cache read speed in FermiCloud host machines
are around 1.2 GB/s. The theoretical transmission time for
QCOW2 and raw images are 3.9 seconds and 18.5 seconds,
respectively. As given in Table 1, the measured transmission
times for cached images are consistent with the calculated
values. Notice that, when images are read from memory, it
takes about 4 seconds for the dirty pages reaches 10% limit.
Hence, the flushing process happens after 4 seconds of the
VM prologue process, and images are continuously being
written into the disk. Since the prologue process fully utilize
the memory bandwidth, the VM CPU utilization during the

1c
2g

1c
4g

1c
8g

1c
16

g

1c
32

g

1c
48

g

4c
2g

8c
2g

16
c3

2g

40

45

50

55

60

Se
co

nd
s

Fig. 8: VM Booting Time
Comparison for Different

Configurations

1c
2g

1c
4g

1c
8g

1c
16

g

1c
32

g

1c
48

g

4c
2g

8c
2g

16
c3

2g

0

0.2

0.4

0.6

0.8

1

U
ti

liz
at

io
n

Fig. 9: VM Booting Peak
CPU Utilization

Comparison for Different
Configurations

prologue process for cached images also reaches 100%.

5.3.3 VM Boot Process
After the image is copied into the host machine, the VM
then enters the boot process. Once the VM is booted, it
can be used by end users. Note that, the boot process starts
immediately after the image is copied into cache, not after
the entire image is written into the disk. From the figures
we can tell that the patterns of VM CPU utilization variation
for all test cases are similar. The VM CPU utilization soon
reaches a peak after the boot process begins, then VM CPU
utilization slowly decreases and remains a low level. Table 1
also shows that the booting times for all cases are almost the
same. The only difference among the different test cases is
the peak VM CPU utilization. For the small instance VMs,
the peak VM CPU utilization is around 60% of single core
CPU utilization. However, for the large instance VMs, the
peak VM CPU utilization is around 80% of single core CPU
utilization.

5.3.4 VM Boot process comparison under different config-
urations
From the above experiments, we observe that different VM
configurations do not affect the VM booting time. However,
the configurations change the peak VM CPU utilization
during the booting process. In order to understand how the
configuration affects the peak VM CPU utilization during
the booting process, we perform a more detailed test on
varies VM configurations. We first test the VMs with 1 vir-
tual core and change the memory from 2GB to 48 GB. Then
we configure the VMs with 2GB memory and change the
number of virtual cores from 2 to 16. All VMs are launched
with QCOW2 images. The booting times of different VMs
are depicted in Fig. 8. As can be seen from the figure,
the booting times of VMs with different configurations
vary only within a small range. We consider them to have
the same booting times. Fig. 9 depicts the peak VM CPU
utilization of VMs with different configurations during the
booting process. It clearly shows that the memory configu-
ration change does not affect the peak VM CPU utilization.
However, the peak VM CPU utilization increases as the
number of virtual cores increases.

5.4 CPU Utilization Impact
In this experiment, VMs are launched under different host
CPU utilizations. We write a small bash script that con-

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 7

0 0.2 0.4 0.6 0.8 1
40

60

80

100

120

Host CPU Utilization

Se
co

nd
s

SQ U
SQ C
LQ U
LQ C

Fig. 10: VM Booting Time
under Different CPU

Utilization for QCOW2
Image

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Host CPU Utilization

V
M

C
PU

U
ti

liz
at

io
n

SQ U
SQ C
LQ U
LQ C

Fig. 11: Peak VM CPU
Utilization under Different

CPU Utilization for
QCOW2 Image

0 0.2 0.4 0.6 0.8 1
50

100

150

200

Host CPU Utilization

Se
co

nd
s

SR U
SR C
LR U
LR C

Fig. 12: VM Booting Time
under Different CPU

Utilization for Raw Image

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Host CPU Utilization

V
M

C
PU

U
ti

liz
at

io
n

SR U
SR C
LR U
LR C

Fig. 13: Peak VM CPU
Utilization under Different
CPU Utilization for Raw

Image

stantly consume the host CPU utilization. We use cgroup to
control the CPU usage of the script. Each time, we increase
5% of the CPU utilization consumed by the script. Hence,
we can simulate the scenario that VMs are launched under
different host CPU utilizations.

Fig. 10 depicts the launching times of VMs with QCOW2
images. As can be seen from the figure, the launching
time of the VMs are relatively steady. For the uncached
images, the maximum launching time is 79 seconds while
the minimum launching time is 68 seconds for both small
and large VM instances. For the cached images, the range of
the VMs’ launching times is from 48 seconds to 61 seconds.
Comparing with the base VM launching times listed in
Table 1, we consider the variations of the launch times
are in normal condition. Hence, we can conclude that the
host CPU utilization does not impact the VMs’ launching
times. As illustrated in Fig. 11, the peak VM CPU utilization
during the booting process are also quite steady(60% for
the small instances and 80% for the large instances). Hence,
the host CPU utilization does not impact the peak VM CPU
utilization during the booting process.

Fig. 12 and Fig. 13 illustrate the launching times and
peak VM CPU utilization under different host CPU utiliza-
tions for the raw images. Similar to the QCOW2 images,
the launching times and peak VM CPU utilizations are
insensitive to the host CPU utilization changes. Hence, we
can conclude that the host CPU utilization does not impact
the VMs’ launching process.

0.2 0.4 0.6 0.8 1

50

100

150

200

250

Host Disk Write Utilization

Se
co

nd
s

SQ U
SR U
LQ U
LR C

Fig. 14: VM Launching
Time under Different IO

Utilization using Uncached
Images

0.2 0.4 0.6 0.8 1

50

100

150

200

250

Host Disk Write Utilization

Se
co

nd
s

SQ C
SR C
LQ C
LR C

Fig. 15: VM Launching
Time under Different IO
Utilization using Cached

Images

0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

Host Disk Write Utilization
Se

co
nd

s

SQ U
SR U
LQ U
LR U

Fig. 16: VM Prologue Time
under Different IO

Utilization using Uncached
Images

0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

Host Disk Write Utilization

Se
co

nd
s

SQ C
SR C
LQ C
LR C

Fig. 17: VM Prologue Time
under Different IO

Utilization using Cached
Images

5.5 Disk Write Utilization Impact

In this experiment, we test the VM launching overhead
under different host disk write utilizations. We use dd com-
mand to constantly write files to the disk., and use cgroup
to control the write speed of the dd command. At each
step, we increase 10% of the disk write bandwidth for dd
command. Hence, we can simulated the scenario that VMs
are launching under different host disk write utilizations.

Fig. 14 and Fig. 15 show the VMs’ launching times under
different host disk write utilizations. Overall, when the host
disk write utilization increases, VMs need more time to be
launched as compared with the base VM launching times.
However, for the cached images, i.e., as illustrated in Fig. 15,
the increasing trends are not so obvious when compared
with the uncached images(Fig. 14). As for the VM prologue
times, the prologue times for uncached images are steady
and close to a constant. However, if the image is cached, the
VMs’ prologue times have larger variations. For the QCOW2
images, the variation is from 4 seconds to 24 seconds, and
for a raw image, the variation is from 39 seconds to 92
seconds. This large variation is caused by cache override.
Since the dd command also write files into the cache, it
is possible that the cached image is overridden by the dd
command. Hence, the missing part of the image need to be
re-transferred from the data repository. In the worst case,
the entire cached image is overridden by the dd command,
and the entire image needs to be copied from the image
repository.

Fig. 18 and Fig. 19 illustrate the booting times for un-

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 8

0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

Host Disk Write Utilization

Se
co

nd
s

SQ U
SR U
LQ U
LR U

Fig. 18: VM Booting Time
under Different IO

Utilization using Uncached
Images

0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

Host Disk Write Utilization

Se
co

nd
s

SQ C
SR C
LQ C
LR C

Fig. 19: VM Booting Time
under Different IO

Utilization using Cached
Images

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Host Disk Write Utilization

V
M

C
PU

U
ti

lia
ti

on

SQ U
SR U
LQ U
LR U

Fig. 20: VM Peak CPU
Utilization under Different

IO Utilization using
Uncached Images

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Host Disk Write Utilization

V
M

C
PU

U
ti

liz
at

io
n

SQ C
SR C
LQ C
LR C

Fig. 21: VM Peak CPU
Utilization under Different

IO Utilization using
Cached Images

cached images and cached images, respectively. It is ob-
served that when the host disk write utilization increases,
the booting time of the VMs also increases. When the host
disk write utilization reaches 100%, it almost takes two times
long to boot a VM when compared to the base VMs’ booting
time. In addition, as shown in Fig. 20 and Fig. 21, the host
disk write utilization does not have much impact on the
peak VM CPU utilization during booting processes.

5.6 Image Repository Impact
Under the FermiCloud architecture, as shown in Fig. 3, all
the machines are connected to the SAN. Hence, when large
number of VMs are launched simultaneously, all the VM
images are read and copied from the SAN at the same
time which may lead to significant increase of the VM’s
launching overheads. We set up another set of experiments
to evaluate the impact of sudden large number of simulta-
neous launches on the VM launching overhead. Since for
cached images, the images are directly read from the host
machine’s memory, hence, the SAN activities does not affect
the VM launching process for cached image. We therefore,
only evaluate uncached images. In particular, we launch a
VM on a host, and simultaneously launch more VMs on
other different hosts.

Fig. 22 shows the average launching times and max-
imum and minimum launching times for the SQ U and
SR U test cases. X-axis presents the number of simultaneous
launches. It is clear that when the number of simultaneous
launches increases, the VM launching times also increase.

2 3 4 5 6 7 8

100

200

300

400

No. of Simultaneous Launches

Se
co

nd
s

SQ AVE
SQ MAX
SQ MIN
SR AVE
SR MAX
SR MIN

Fig. 22: VM Launching
Time under Different

Simultaneous Launches

2 3 4 5 6 7 8
0

100

200

300

400

No. of Simultaneous Launches

Se
co

nd
s

SQ AVE
SQ MAX
SQ MIN
SR AVE
SR MAX
SR MIN

Fig. 23: VM Prologue Time
under Different

Simultaneous Launches

2 3 4 5 6 7 8
0

20

40

60

80

No. of Simultaneous Launches

Se
co

nd
s

SQ
SR

Fig. 24: Ave. VM Booting
Time under Different

Simultaneous Launches

2 3 4 5 6 7 8
0

20

40

60

80

No. of Simultaneous Launches

Se
co

nd
s

SQ MAX
SQ MIN
SR MAX
SR MIN

Fig. 25: Max and Min VM
Booting Time under

Different Simultaneous
Launches

2 3 4 5 6 7 8
0

20

40

60

80

100

No. of Simultaneous Launches

V
M

C
PU

U
ti

liz
at

io
n

(%
) SQ

SR

Fig. 26: VM Peak CPU
Utilization under Different

Simultaneous Launches

2 3 4 5 6 7 8
0

10

20

30

No. of Simultaneous Launches
V

M
C

PU
U

ti
liz

at
io

n
(%

) SQ
SR

Fig. 27: VM Average
Prologue CPU Utilization

under Different
Simultaneous Launches

As the number of simultaneous launches only affect the
image read speed from the SAN, once the image is copied
to the local host machine, the booting process becomes the
same as the base VM booting process. Fig. 24 and 25 show
the average VM booting time and maximum and minimum
VM booting time, respectively. Fig. 26 depicts the average
peak VM CPU utilization during the VM booting process.
It is clear that the VMs’ average booting times and average
peak VM CPU utilization during the booting process are not
influenced much by the number of simultaneous launches
and aligned well with the base VMs’ booting patterns as
stated in Table 1.

As shown in Fig. 23, the number of simultaneous
launches has significant impact on the image transmission
process. When the number of simultaneous launches in-
creases, the image transfer time variation also increases.
This is because when the number of simultaneous launches
increases, the number of requests for read bandwidth of

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 9

the SAN also increases. As a result, the read speed for
each request is decreased. Fig. 27 shows when the read
speed decreases, the average VM CPU utilization during
the prologue process also decreases linearly. As mentioned
before, the local disk read bandwidth is 500MB/s. When the
read bandwidth is fully utilized, the host CPU utilization
consumption is 70% on a single core. When eight VMs are
being launched simultaneously, the measured average read
speed on the SAN is 62MB/s for the tested VM. Hence,
the theoretical VM CPU utilization during the prologue
process is 62/(500/0.7) = 8.6% which is consistent with
the measured average value(8.4%).

5.7 Network Impact
Because the FermiCloud is using SAN as its storage, all
the image transmission processes are treated as local disk
activities. Hence, the network activities will not have im-
pact on the VMs’ launching process. However, the SAN
architecture itself is a special network where the network
bandwidth is much larger than the disk write/read speed
and the network bandwidth is fully dedicated to its con-
nected machines. In the environment where the machines
are connected by the high speed Ethernet, the actual net-
work bandwidth (at GB level) is still much larger than
the disk write/read speed (at hundreds MB level). We also
conducted the same set of experiments that we have done
on the SAN architecture FermiCloud is built upon on the
Ethernet environment [21]. The experimental results are the
same as the observations we have on the SAN architecture.
The disk write/read speed is also the dominant factor that
significantly impact the VMs’ launching overhead.

5.8 Discussion
From these experiments, we can conclude the following:

• VM launching overhead mainly contains two parts: pro-
logue (image copying/transferring) overhead and booting
overhead;

• booting overhead is relatively steady, i.e., has less varia-
tions when it is compared to the prologue overhead;

• prologue overhead, on the other hand, has significant
variations when the disk read speed on image repository
varies; and

• disk write utilization has significant impact on both pro-
logue overhead and booting overhead.

As [5] states that different VM and cloud management
tools have significant performance differences on VM pro-
cess. In the experiments, we are trying to minimize the
impact of OpenNebula by discounting its default scheduler
overhead from VM launching process. We do believe that
different VM management tools may impact VM perfor-
mance on resource consumption. Using different VM man-
agement tool, for instance, Xen may lead different peak CPU
utilization during the VM booting process, but we believe
that the patterns of the image transferring process and VM
booting process are the same regardless of the VM and cloud
management tools.

Another major factor that impacts the VM launching pro-
cess is the cloud infrastructure. In our earlier work, we have
performed the same set of experiments on a different cloud

infrastructure where host machines and image repository
are connected by Ethernet and regular NFS file system [21].
The patterns we have observed from VM launching process
are the same on both cloud infrastructures. Hence, we be-
lieve that the patterns of VM launching process are generally
the same in most of the private cloud systems. One of our
future work is to verify the hypothesis.

In the next section, we present a reference model for the
VM launching overhead based on the data obtained.

6 VM LAUNCHING OVERHEAD REFERENCE
MODEL

Before we present the reference model for the VM launching
overhead in private cloud, we first introduce notations to be
used in defining the reference model.

A VM in a private cloud is defined as vi = (fi, ti, Hi),
where fi is the image size of the VM vi, ti is the VM start
time and Hi is the host machine that the VM is to be de-
ployed on. For each host Hi, we use VHi = {v1, v2, . . . , vn}
to denote the set of VMs deployed on the host Hi. In the
set VHi , virtual machines are sorted according to their start
time in non-decreasing order. For each host Hi, pi and mi

are the number of cores and the total memory owned by
the host Hi, respectively. The BwHi , B

r
Hi

and BcHi denote
host machine disk write bandwidth, disk read bandwidth,
and cache bandwidth, respectively; Sw(Hi, t), Sr(Hi, t) and
Sc(Hi, t) denote the file write speed, file read speed, and file
cache speed on host Hi at time t, respectively.

The proposed reference model contains three different
overheads: CPU utilization overhead, disk write utilization
overhead, and timing overhead which is the time needed
for launching a VM untill it is ready to execute tasks. We
first model the CPU utilization and disk write utilization
that a single VM consumes on the host machine during
the launching process. Then we model the host machine’s
entire system CPU utilization and disk write utilization. As
discussed in section 5, the complete VM launching process
mainly consists of two parts: prologue and boot process. We
discuss the reference models for these two steps below.

6.1 Prologue Overhead Model
The prologue overhead we model here also contains three
different parts: CPU utilization overhead, disk write uti-
lization overhead, and timing overhead which is the time
needed for transferring an image from image repository to
the host machine. Since the prologue overhead for uncached
image and cached image are different, we have separate
models for the uncached and the cached images, respec-
tively.

6.1.1 Uncached Image
The image transferring time for VM vi = {fi, ti, Hi} with
uncached image is defined below:

(1)Transi =
fi

Sr(Hi, ti)

From the experiments we know that if local disk read
bandwidth is fully utilized by a process, the process also
utilizes 70% of one physical core of the host machine. For

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 10

different systems, the ratio may vary. We denote such ratio
as β. For a given system, the β is a constant. We first define
the base VM CPU utilization of prologue as follows:

(2)
Ub pro(i, t) =

1

1 + e−0.5(Transi+ti)(t−ti)
−

1

1 + e−0.5(Transi+ti)(t−(Transi+ti))

From the observation of image transferring process in
previous section we know that when the image transferring
process starts, it consumes all the I/O utilization in a very
short period and occupied the I/O resources until it finishes
transferring, then it releases the I/O resource. Equation (2)
is given to match such utilization variations. The VM CPU
utilization of transferring an image for VM vi is modeled as:

(3)
Utr(i, t)

=

{
Sr(Hi,ti)
BrHi

/β ∗ Utr base(i, t) ti ≤ t ≤ ti + Transi
0 otherwise

The disk write utilization consumed by a VM’s prologue
process is more complicated. As the write process is not
synchronized with the prologue process, we first need to
determine the start time of the disk write process. As dis-
cussed above, by Linux default setting, a file is written into
disk at the time when the dirty page reaches 10% of the
memory or 30 seconds whichever happens first. Hence, we
define the start time of write process for VM vi as:

stUCw (vi) = ti +min{30, min{fi,mi/10}
Sr(Hi, ti)

} (4)

We then need to define the time points that the VM
launching process actually writes disk. As discussed above,
if the disk write speed is larger than the read speed, the
write process sleeps for 5 seconds after writing all the
content in the dirty page. We calculate the first time duration
that the process writes file into the disk.

fstUCw (vi) = min{ fi
Sw(Hi,ti)

, (5)

min{30, min{fi,mi/10}
Sr(Hi,ti)

} · Sr(Hi,ti)
Sw(Hi,ti)−Sr(Hi,ti)}

After the first write duration, the remaining size of the
file is rfi = fi − fstUCw (vi) ∗ Sw(Hi, ti). Hence, the total time
of writing the remaining file into the disk is rfi/Sw(Hi, ti).
The write time after each 5 second sleep is wtsleep = 5 ∗
Sr(Hi, ti)/(Sw(Hi, ti) − Sr(Hi, ti)). Then the total number
of sleeps isNsleep = drfi/Sw(Hi, ti)/wtsleepe. Hence, we can
obtain the time points that the entire write process finishes
as below:

ltUCw (vi) = stUCw (vi)+ fstUCw (vi)+ rfi/Sw(Hi, ti)+Nsleep ∗ 5

(6)

The time point set that the write process actual writes
file into disk is defined as:

(7)

T = {[stUCw (vi), stUCw (vi) + fstUCw (vi)] ∪
[stUCw (vi) + fstUCw (vi) + 1 ∗ 5,
stUCw (vi) + fstUCw (vi) + 1 ∗ 5 + wtsleep] ∪ . . . ∪
[stUCw (vi) + fstUCw (vi) + (Nsleep − 1) ∗ 5,
stUCw (vi) + fstUCw (vi) + (Nsleep − 1) ∗ 5 + wtsleep] ∪
[stUCw (vi) + fstUCw (vi) +Nsleep ∗ 5,
stUCw (vi) + fstUCw (vi) +Nsleep ∗ 5

+ (rfi/Sw(hi, ti))modwtsleep]}

At last, we define the disk write utilization consumed
by the VM prologue process and the host CPU utilization it
consumes. We first define the base host disk write utilization
as:

IOUC
w base(i, t) =

1

1 + e−0.5(ltUCw)(t−stUCw (vi))
−

1

1 + e−0.5(ltUCw)(t−ltUCw (vi))
(8)

Then the host disk write utilization for the prologue
process is defined as:

IOUC
w (i, t) =

{
Sw(Hi,ti)
BwHi

∗ IOUC
w base(i, t) t ∈ T

0 otherwise
(9)

The host CPU utilization consumption of the write pro-
cess is:

UUCw (i, t) =
1

pi
IOUC

w (i, t) (10)

6.1.2 Cached Image
The prologue time and VM CPU utilization during the pro-
logue process can be calculated using equation (1) and (3)
by replacing the Sr(hi, ti) with Sc(hi, ti), respectively. For
the host disk write utilization during the prologue process,
the model is much simpler compared with the model for the
uncached images.

The start time point stw(vi) of the write process also can
be calculated using equation (4) by replacing Sr(hi, ti) with
Sc(hi, ti). The finish time point of the write process is:

ltw(vi) = stw(vi) +
fi

Sc(Hi, ti)
(11)

Hence, the base host disk write utilization for cached
images is defined as:

IOw base(i, t) =
1

1 + e−0.5(ltw)(t−stw(vi))
−

1

1 + e−0.5(ltw)(t−ltw(vi))
(12)

Then the host disk write utilization for the prologue
process is:

IOC
w(i, t)

=

{
Sc(Hi,ti)
BcHi

∗ IOw base(i, t) stw(vi) ≤ t ≤ ltw(vi)

0 otherwise

(13)

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 11

The host CPU utilization consumption of the write pro-
cess is:

UCw (i, t) =
1

pi
IOC

w(i, t) (14)

In general, the host disk write utilization during the VM
prologue process is defined as:

IOw(i, t) =

{
IOUC

w (i, t) uncached image
IOC

w(i, t) cached image
(15)

The host CPU utilization consumption of the write pro-
cess is:

Uw(i, t) =

{
UUCw (i, t) uncachedimage
UCw (i, t) cachedimage

(16)

Note that the model for uncached images only validates
for the scenario when Sw(Hi, ti) > Sr(Hi, ti) and images
are not cached. When Sw(Hi, ti) ≤ Sr(Hi, ti), we need to
use the cached image model by replacing Sc(Hi, ti) with
Sr(Hi, ti).

6.2 Booting Overhead Model
The VM booting overhead also refers to the timing overhead
and CPU utilization overhead. As once the image is copied
to a host, it will not consume any disk write utilization
for the booting process. We consider that there is no disk
write overhead for the virtual machine booting process. The
experiments also indicate that the host disk write utilization
impacts the booting overhead. Hence, we model the CPU
utilization overhead for the VM vi’s booting process as
follows:

(17)Ub(i, t)

=

{
a ∗ (t− Transi − ti) , t < Transi + ti +

f(vi)
a

f(vi)
1
me
−t′γ(α(1+IOs(Hi,t−1))+ λ

t′+λ) , otherwise

where f(vi) is the function related to the virtual CPU cores
that vi has and it is used to control the peak VM CPU
utilization during the booting process. In equation(17), a,
γ, α and λ are constants, and γ and λ dominate the function
decay rate while α determines the minimum decay rate,m is
the number of cores on the host machine and IOs(Hi, t− 1)
represents the system’s disk write utilization at time t − 1.
t′ = t − Transi − ti − f(vi)/a. We will formally define the
system disk IO utilization in section 6.5.

In OpenNebula, VMs are not immediately ready for use
until all the necessary services, such as SSHD, are started.
As there is no accurate way to tell the actual time when a
virtual machine is booted and ready for use unless entering
into a running virtual machine and check the log, therefore,
we base our estimation of the time points on the variation
of the VM’s CPU utilization consumption. If the VM’s CPU
utilization consumption remain stable, then we consider the
VM is booted and ready for use. We define the time point
tb(i) at which a VM vi is ready to use as:

tb(i) = max{t||U ′b(i, t)|≤ ε} (18)

where U ′b(i, t) is the first derivative of Ub(i, t) and ε is
the threshold to determine whether the virtual machine’s
CPU utilization consumption become stable. Then, we can
calculate the VM booting time is as (tb(i)− Transi).

6.3 Virtual Machine Launching Overhead Model
We have formally modeled image transfer overhead and
virtual machine booting overhead. Combining the two com-
poments together, we derive VM launching overhead func-
tions. In particular, combining equation (3) and equation
(17), the VM vi’s launching CPU utilization function is
modeled as:

U(i, t) =

{
Utr(i, t) t ≤ ttran
Ub(i, t) t > ttran

(19)

Since IO utilization consumed by the VM booting pro-
cess is negligible, the IO utilization function for VM vi’s
launching process is the same as equation (15).

The total time needed for launching a VM vi then can be
calculated as image copying time plus VM booting time. It
is formally defined as follow:

toverhead(i) = tb(i)− ti (20)

6.4 Virtual Machine Utilization Consumption Model
The complete VM utilization functions consist of the VM
launching overhead utilization functions and the utilization
functions after workloads are deployed on the virtual ma-
chine. We assume at time t′ ≥ tb(i), the VM vi starts execut-
ing tasks; and the CPU and disk IO utilization consumption
function of vi at t′ are Ue(t) and IOe(t), respectively. Then
the VM CPU utilization consumption model is defined
below:

Uc(i, t) =

 Utr(i, t) t ≤ ttran
Ub(i, t) t > ttran
Ue(i, t) t ≥ t′

(21)

The VM IO utilization consumption model is defined as:

IOc(i, t) =

{
IOw(i, t) ti ≤ t ≤ tb(i)
IOe(i, t) otherwise

(22)

6.5 System Utilization Model
We assume that host machines only run VMs and all other
critical system services consume a small portion of the
system CPU and IO utilization. Then we can calculate the
system CPU and disk IO utilization as the summation of
the VMs’ CPU and IO utilization consumptions. The system
CPU utilization of host hi is modeled below:

Us(Hi, t) = max{1,
|VHi |∑
j=1

{Uc(j, t)}+
|VHi |∑
j=1

{Uw(j, t)}} (23)

The system IO utilization of host hi can be modeled as:

IOs(Hi, t) = max{1,
|VHi |∑
j=1

{IOc(j, t)}} (24)

Intuitively, the mathematical equations used to model the
VM launching process in this section are obtained by finding
the best match equations to the plotted data shown in
Section 5. There may exist other equations that can also
represent the variations of the real data. To balance the
trade offs between accuracy and complexity, we choose the
equations that we believe give fair accuracy within a short
computational time period. In next section, we use data
obtained from real operation cloud to verity the accuracy
of the developed reference model.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 12

7 EVALUATION

We build the reference model for virtual machine launching
overhead based on a large amount of data obtained from
a real production system. However, we cannot guarantee
the accuracy of the model unless we compare the calculated
data using the model we built with the real system data
and prove the accuracy of the model. Since some of the
parameters we use for modeling are system dependent,
we focus the evaluation on the same given system, i.e.,
FermiCloud. We first use base VM launching overhead
values shown in Section 5 to determine all the parameters.
Once the parameters are determined, they are fixed for all
the evaluation experiments. To evaluate the performance of
the developed model, we first launch VMs on FermiCloud
under different system loads. Then we use the developed
reference model to simulate the launch process use the same
VM release pattern.

We use mean square weighted deviation to evaluate the
accuracy of our developed model from four aspects, i.e., VM
CPU Utilization, host CPU utilization, host I/O utilization
and VM launching time. We denote N as the total number
of sampling points. The mean square weighted deviation is
defined as follows:

MSWD =
1

N

N∑
i=1

∑n
j=1(Us(i)− Ur(i, j))2

σ2
(25)

where n is the number of the repetition of one experiment.
Ur(i, j) is the real data from the ith sampling point and jth

repetition. Us represents the calculated data at ith sampling
point. σ is the standard deviation. To check the real time
point for the VM that is ready for use, we use the VM system
log to check the starting time point of the SSHD service.

We first compare the base overhead obtained by calcu-
lating the value based on the model proposed in section 6,
and the real data obtained on FermiCloud.

Fig. 28(a), Fig. 28(b), Fig. 28(c), Fig. 28(d), Fig. 29(a),
Fig. 29(b), Fig. 29(c), and Fig. 29(d), draws the host CPU uti-
lization, host disk write utilization and VM CPU utilization
for SQ U SQ C LQ U LQ C SR U SR C LR U LR C test
cases using the developed VM launching overhead model,
respectively. Compare the graph with the utilization varia-
tions shown in Fig. 4, Fig. 5, Fig. 6, and Fig. 7 obtained from
the real operation data from FermiCloud. The calculated
data using our developed model is very close to the real
data.

Table 2 gives a more detailed comparison between the
real data and calculated data. From the table, we can observe
that the maximum mean square weighted deviation for the
VM CPU utilization of base test cases is 4.55 and the mini-
mum mean square weighted deviation for the base test cases
is 0.41. As the real data for the base cases shown in Fig. 4(a)
to Fig. 7(b), the VM CPU utilization during the booting
process drops for a small duration after it reaches the peak
utilization, then immediately rises a little bit and finally
decreases continuously. While in our model, the VM CPU
utilization for the booting process keeps decreasing after
reaches its peak utilization. Hence the range of the mean
square weighted deviation for the VM CPU utilization for
the base cases is from 0.41 to 4.55. The average mean square
weighted deviation for VM CPU utilization of all base cases

VM CPU Util. Host CPU U. Host IO U. Time
Base SQ U 2.79 2.32 1.61 2.35
Base SQ C 1.31 2.02 1.61 3.16
Base LQ U 4.28 0.71 1.60 4.21
Base LQ C 1.88 2.53 1.86 2.87
Base SR U 1.62 2.13 2.03 3.18
Base SR C 4.53 3.55 2.12 2.58
Base LR U 0.41 1.12 1.15 2.41
Base LR C 4.55 3.21 0.34 2.85
Sim. Lau. 2.39 1.98 1.38 2.43
Rand. Lau. 1.78 1.83 1.40 2.27
Overall 2.55 2.14 1.51 2.82

TABLE 2: Mean Square Weighted Deviation for Calculated
Overheads in VM CPU Util., Host CPU Util., Host IO Util.,

and Time

is 2.67. While the mean square weighted deviation for host
disk write utilization for base cases only varies from 0.34
to 2.12. And the average mean square weighted deviation
for host disk write utilization for all base cases is 1.54. As
a result, the average mean square weighted deviation of
host CPU utilization for all base cases is 2.19. The range
of the mean square weighted deviation for the predicted
VM launching time for base cases is from 2.35 to 4.21. The
average mean square weighted deviation for VM launching
time predicted by our model for all base cases is 2.93.

We further evaluate when more than one VMs are
launched on the same host machine simultaneously. The
number of simultaneous launch increases from 2 to 4. The
VMs that to be launched are arbitrary selected from our four
different test cases. The obtained data is given in Table 2. The
mean square weighted deviation for calculated overheads
in VM CPU utilization, host CPU utilization, host disk write
utilization and VM launching time are 2.39, 1.98, 1.38 and
2.43, respectively. The performance of our developed model
remain the same level compared to the base test cases
(average mean square deviation for VM CPU utilization,
host CPU utilization, host disk write utilization and VM
launching time are 2.67, 2.19, 1.54 and 2.93, respectively).

For the last set of evaluations, we launch VMs under a
random release pattern. Differ from previous evaluations, as
soon as a VM is launched, it immediately executes an appli-
cation deployed on it. Hence, the host machine has different
CPU and IO utilization at different time instances when a
new VM is released. We use the reference model to simulate
the VM launching process in a real cloud environment using
the same release pattern. From the Table 2, it is clear that
the developed reference model accurately reflects the VM
launching overhead, the mean square weighted deviation
of calculated data is less than 2.5 from all aspects.

Overall, for all our test cases, the average mean square
weighted deviation for VM CPU utilization is 2.55, the
average mean square weighted deviation for host disk write
utilization is 1.51, the average mean square weighted devi-
ation for host CPU utilization is 2.14, and the average mean
square weighted deviation for launch time is 2.82. With an
average mean square weighted deviation less than 3 from
all four aspects, we believe that our developed model can
accurately reflect the VM launching process.

8 CONCLUSION

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 13

0 50 100 150 200 250 300
0

20

40

60

80

100

Seconds

U
ti

liz
at

io
n

CPU
IO WRITE
VM CPU

(a) VM launching overhead
with SQ U using proposed
model

0 50 100 150 200 250 300
0

20

40

60

80

100

Seconds

U
ti

liz
at

io
n

CPU
IO WRITE
VM CPU

(b) VM Launching Overhead
with SQ C using Developed
Model

0 50 100 150 200 250 300
0

20

40

60

80

100

Seconds

U
ti

liz
at

io
n

CPU
IO WRITE
VM CPU

(c) VM Launching Overhead
with LQ U using Developed
Model

0 50 100 150 200 250 300
0

20

40

60

80

100

Seconds

U
ti

liz
at

io
n

CPU
IO WRITE
VM CPU

(d) VM Launching Overhead
with LQ C using Developed
Model

Fig. 28: VM Launching Overhead with QCOW2 Image using Developed Model

0 50 100 150 200 250 300
0

20

40

60

80

100

Seconds

U
ti

liz
at

io
n

CPU
IO WRITE
VM CPU

(a) VM Launching Overhead
with SR U using Developed
Model

0 50 100 150 200 250 300
0

20

40

60

80

100

Seconds

U
ti

liz
at

io
n

CPU
IO WRITE
VM CPU

(b) VM Launching Overhead
with SR C using Developed
Model

0 50 100 150 200 250 300
0

20

40

60

80

100

Seconds

U
ti

liz
at

io
n

CPU
IO WRITE
VM CPU

(c) VM Launching Overhead
with LR U using Developed
Model

0 50 100 150 200 250 300
0

20

40

60

80

100

Seconds

U
ti

liz
at

io
n

CPU
IO WRITE
VM CPU

(d) VM Launching Overhead
with LR C using Developed
Model

Fig. 29: VM Launching Overhead with Raw Image using Developed Model

One of the main challenges in developing the cloud bursting
module is to decide when and where to launch a VM so that
all resources are most effectively utilized and the system
performance is optimized. We have found that the VM
launching overhead has a large variation under different
system states. The CPU and I/O utilizations caused by
VM launching process can have significant impact on cloud
bursting strategies. Hence, being able to model accurately
the dependency between VM launching overhead and sys-
tem resource utilization is critical in deciding when and
where a VM should be launched. This paper has studied the
VM launching overhead patterns based on data obtained
on FermiCloud and presented a VM launching overhead
reference model to represent such overhead. The evaluation
shows that our proposed model can accurately predict the
VM launching overhead within a mean square weighted
deviation less than 3 from all four aspects, i.e. VM CPU
utilization, system CPU utilization, system I/O utilization
and VM launching time.

The model developed in this paper is based on SAN-
based cloud infrastructures with OpenNebula and KVM as
its cloud and VM management tool, respectively. We do
believe that the patterns we modeled for VM launching
process is applicable to other private cloud in general. It
is our future work to verify our hypothesis that the model
does fit different virtualization techniques, i.e. fully vir-
tualization and hardware-assisted virtualization; different
cloud management tools, i.e., OpenStack etc.; different VM
management tools, i.e., Xen; and different cloud infrastruc-
tures. In addition, following the motivation of developing
the reference model, our immediate work is to integrate the

reference model into the cloud bursting decision algorithms.

REFERENCES

[1] Feature - clouds make way for STAR to shine.
http://www.isgtw.org/feature/isgtw-feature-clouds-make-
way-star-shine.

[2] https://www.scientificlinux.org/.
[3] Opennebula. http://opennebula.org.
[4] Opennebula managing virtual machines.

http://opennebula.org/documentation:archives:rel3.0:vm guide 2.
[5] P. Armstrong, A. Agarwal, A. Bishop, A. Charbonneau, R. Des-

marais, K. Fransham, N. Hill, I. Gable, S. Gaudet, S. Goliath, et al.
Cloud scheduler: a resource manager for distributed compute
clouds. arXiv preprint arXiv:1007.0050, 2010.

[6] A. Beloglazov and R. Buyya. Energy efficient allocation of virtual
machines in cloud data centers. In Cluster, Cloud and Grid Com-
puting (CCGrid), 2010 10th IEEE/ACM International Conference on,
pages 577–578. IEEE, 2010.

[7] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya. Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms. Software: Practice and Experience, 41(1):23–50,
2011.

[8] R. N. Calheiros, R. Ranjan, and R. Buyya. Virtual machine
provisioning based on analytical performance and qos in cloud
computing environments. In Parallel Processing (ICPP), 2011 Inter-
national Conference on, pages 295–304. IEEE, 2011.

[9] N. Huber, M. von Quast, M. Hauck, and S. Kounev. Evaluating
and modeling virtualization performance overhead for cloud en-
vironments. In CLOSER, pages 563–573, 2011.

[10] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman,
and P. Maechling. Scientific workflow applications on amazon
ec2. In E-Science Workshops, 2009 5th IEEE International Conference
on, pages 59–66. IEEE, 2009.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 14

[11] H. A. Lagar-Cavilla, J. A. Whitney, R. Bryant, P. Patchin,
M. Brudno, E. de Lara, S. M. Rumble, M. Satyanarayanan, and
A. Scannell. Snowflock: Virtual machine cloning as a first-class
cloud primitive. ACM Transactions on Computer Systems (TOCS),
29(1):2, 2011.

[12] J. Lauret, M. Walker, S. Goasguen, and L. Hajdu. From grid to
cloud, the star experience, 2010.

[13] M. Mao and M. Humphrey. A performance study on the vm
startup time in the cloud. In Cloud Computing (CLOUD), 2012
IEEE 5th International Conference on, pages 423–430. IEEE, 2012.

[14] Y. Z. Mengxia Zhu, Qishi Wu. A cost-effective scheduling algo-
rithm for scientific workflows in cloud. Proceedings of 31st IEEE
International Performance Computing and Communications Conference,
2012.

[15] R. Moreno-Vozmediano, R. Montero, and I. Llorente. Iaas cloud
architecture: from virtualized data centers to federated cloud
infrastructures. 2012.

[16] S.-Y. Noh, S. C. Timm, and H. Jang. vcluster: a framework for auto
scalable virtual cluster system in heterogeneous clouds. Cluster
Computing, pages 1–9, 2013.

[17] J. Qiu, J. Ekanayake, T. Gunarathne, J. Y. Choi, S.-H. Bae, H. Li,
B. Zhang, T.-L. Wu, Y. Ruan, S. Ekanayake, et al. Hybrid cloud and
cluster computing paradigms for life science applications. BMC
bioinformatics, 11(Suppl 12):S3, 2010.

[18] A. N. Toosi, R. N. Calheiros, R. K. Thulasiram, and R. Buyya.
Resource provisioning policies to increase iaas provider’s profit in
a federated cloud environment. In High Performance Computing and
Communications (HPCC), 2011 IEEE 13th International Conference on,
pages 279–287. IEEE, 2011.

[19] J.-S. Vöckler, G. Juve, E. Deelman, M. Rynge, and B. Berriman.
Experiences using cloud computing for a scientific workflow ap-
plication. In Proceedings of the 2nd international workshop on Scientific
cloud computing, pages 15–24. ACM, 2011.

[20] H. Wu, S. Ren, G. Garzoglio, S. Timm, G. Bernabeu, H. W. Kim,
K. Chadwick, H.-J. Jang, and S.-Y. Noh. Automatic cloud bursting
under fermicloud. Workshop on Cloud Services and Systems, 2013.

[21] H. Wu, S. Ren, G. Garzoglio, S. Timm, G. Bernabeu, and S.-Y. Noh.
A reference model for virtual machine launching overhead. In
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2014), 2014.

Hao Wu is now a Ph.D candidate in Computer
Science Department at Illinois Institute of Tech-
nology. He received B.E in Information Security
from Sichuan University, Chengdu, China, 2007.
He received M.S. in Computer Science from Uni-
versity of Bridgeport, Bridgeport, CT, 2009. His
current research interests mainly focus on cloud
computing, real-time distributed open systems,
Cyber-Physical System, parallel and distributed
systems, and real-time applications.

Dr. Shangping Ren is an associate professor
in Computer Science Department at the Illinois
Institute of Technology. She earned her Ph.D
from UIUC in 1997. Before she joined IIT in
2003, she worked in software and telecommuni-
cation companies as software engineer and then
lead software engineer. Her current research
interests include coordination models for real-
time distributed open systems, real-time, fault-
tolerant and adaptive systems, Cyber-Physical
System, parallel and distributed systems, cloud

computing, and application-aware many-core virtualization for embed-
ded and real-time applications.

Dr. Gabriele Garzoglio is head of the Grid
and Cloud Services Department of the Scientific
Computing Division at Fermilab and he is deeply
involved in the project management of the Open
Science Grid. He oversees the operations of
the Grid services at Fermilab and sponsors the
Cloud program in the division. Gabriele Gar-
zoglio has a Laura degree in Physics from Uni-
versity of Genova, Italy, and a PhD in Computer
Science from DePaul University, Chicago.

Dr. Steven Timm is the associate head for
Cloud Computing of the Grid and Cloud Services
Department at Fermilab. He has led the Fermi-
Cloud project since its inception in early 2010,
and been a member of the Fermilab staff since
2000. In this role he coordinates working with
visiting students and guest researchers from
other laboratories doing research and devel-
opment on innovative techniques in distributed
computing and cloud computing. He completed
his PhD. Studies at Carnegie Mellon University

in 1995.

Gerard Bernabeu is an IT engineer and re-
searcher of the Grid and Cloud Services De-
partment of the Scientific Computing Division at
Fermilab. He is Linux DevOps enthusiast with
hand-on experience in IP networks, storage and
Cloud Computing in dynamic, collaborative re-
search communities. He received MsC in High
Performance Computing and Information Theory
by the Universitat Autnoma de Barcelona (UAB).

Dr. Keith Chadwick is ITIL Avilability and Ser-
vice Continuity Manager at fermilab. During 2009
- 2013, he was the head of the Grid and Cloud
Services Department of the Scientific Comput-
ing Division at Fermilab. He has been a member
of the Fermilab staff since 1987. Dr. Keith re-
ceived B.S. and M.A. in Physics from the Univer-
sity of Rochester in 1978 and 1980, respectively.
He received Ph.D in Physics from the University
of Rochester in 1984.

Dr. Seo-Young Noh is a principal researcher in
National Institute of Supercomputing and Net-
working at Korea Institute of Science and Tech-
nology Information and an associate professor
at Korea University of Science and Technology.
He is leading the development of virtual cluster
system called vcluster in conjunction with KISTI-
FNAL joint project. Before joining the institutes,
he worked for LG Electronics in the fields of
embedded database systems and Linux mobile
platforms. He received his B.E and M.E in Com-

puter Engineering from Chungbuk National University in Korea and his
M.S. and Ph.D. in Computer Science from Iowa State University, respec-
tively. His research interests are including scientific data management,
cloud & scientific computing, Linux platforms, databases, and natural
language processing.

